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Abstract  

 
North American Multi-Model Ensemble (NMME) precipitation forecast skill over Iran is evaluated using Taylor 

diagrams and ranked probability skill scores (RPSS) as determined over a 29-year test period (1991-2019). The 

forecast skill for both monthly (October through June for lead-times of 0.5 to 3.5 months) and seasonal (October 

to December (OND), January to March (JFM), and April to June (AMJ) for lead-times of 1.5 to 3.5 months) time 

scales is evaluated using six NMME models as well as multi-model ensemble means (MMM). The latest versions 

of these models for forecasting Iran’s precipitation have not been evaluated thus far. The Global Precipitation 

Climatology Center (GPCC) version 2020 data set is used to verify the models. Among individual NMME models, 

Geophysical Fluid Dynamics Laboratory- Seamless System for Prediction and Earth System Research (GFDL-

SPEAR), has generally the highest forecast skill. Both Taylor diagrams and RPSS of most of the models have 

indicated that the highest forecast skill is found for the month of November such that the Pearson correlation for 

both SPEAR and MMM is statistically significant for all lead times. For both monthly and seasonal time scales, 

the temporal Pearson correlation (TPC) between the observed and forecasts of the MMM is higher than the TPC 

of the individual models. The spatial Pearson correlation (SPC) and normalized centered root mean square error 

(NCRMSE) of the SPEAR is close to MMM, but the normalized standard deviation (NSD) of the SPEAR is closer 

to one compared to the MMM for months from November to March and two seasons (OND, JFM seasons). The 

MMM precipitation forecasts are underestimated over the northern regions and Zagros mountains for JFM and 

OND seasons for both 1.5-month and 2.5-month lead times. The degree to which the forecast skill of MMM is 

dependent on the El Niño Southern Oscillation (ENSO) connections with precipitation over Iran is examined. 

Significant Spearman correlations between simultaneous observed Nino3.4 index and Iran precipitation are found 

for OND, but not for JFM and AMJ. The MMM reproduces the observed ENSO teleconnections to the tropical 

Pacific in OND, consistent with forecast skill in that season. However, the MMM also produces forecast skill in 

JFM and AMJ when the ENSO influence is marginal, showing that ENSO is not the only source of skill in the 

models. 

 

 

Keywords Forecasting, forecast skill, precipitation, NMME, Iran. 

 

 

1. Introduction  

Much of Iran has an arid or semi-arid climate with the driest areas over the central, eastern and southern parts. 

Ranked as the fourth most natural disaster-prone country in the world 

(https://reliefweb.int/sites/reliefweb.int/files/resources/AD_2019_Iran_0.pdf), precipitation variability in Iran has 

a significant impact on agricultural production and water resources. Droughts have been found to be severe in 

central and southwest Asia from 1998 to 2001, causing stresses in agriculture, water resources, animal husbandry 
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and public health in these areas (Agrawala et al. 2001; Barlow et al. 2002). These droughts have imposed a direct 

cost of USD $1,605 million, equivalent to 30.3% of the total value added to the cropping sector in Iran (Salami 

et al. 2009). Also, the flooding in 2001 and 2002 that followed the drought affected about 1.5 million people in 

Iran (http://www.emdat.be/). These natural hazards indicate that monthly and seasonal precipitation forecast is 

vital for planning in this region.  

The El Niño-Southern Oscillation (ENSO) has a large contribution to seasonal forecast skill (Balmaseda and 

Anderson 2009; Goddard and Dilley 2005; Landman et al. 2012; Weisheimer et al. 2009) such that the seasonal 

prediction skill level is dependent on the strength of the teleconnection between ENSO and seasonal variability 

of precipitation (Landman et al. 2019). The connection between the ENSO signal and January-March (JFM) 

precipitation in Iran is weak (Nazemosadat and Cordery 2000; Nazemosadat and Ghasemi 2004), but is 

statistically significant for October-December (OND) rainfall season (Nazemosadat and Cordery 2000). The high 

frequencies of above-normal precipitation in September-November (SON) over the Middle East is related to El 

Niño events (Mason and Goddard 2001). Alizadeh-Choobari et al. (2018) reported that both La Niña and eastern 

Pacific El Niño events are related to annual precipitation in Iran; however, the relationship between central Pacific 

El Niño and annual precipitation is not statistically significant. In general, the abovementioned studies as well as 

other previous analysis (Barlow et al. 2002, Mariotti 2007; Barlow et al. 2016, Hoell et al. 2017; Hoell et al. 2018) 

have indicated that El Niño increases the probability of above-average Southwest Asia precipitation, while La 

Niña increases the probability of below-average Southwest Asia precipitation. 

The forcing of precipitation variability over Southwest Asia, defined as the nations of Pakistan, Afghanistan, Iran 

and Iraq, has been studied based on modes of the Atlantic and tropical and Indo-Pacific oceans (Hoell et al. 2015). 

Hoell et al. (2015) reported that November through April precipitation over Southwest Asia is significantly 

correlated with variations in sea surface temperature (SST), which include Pacific Decadal Variability (PDV), 

ENSO and the long-term change of global SST (GSST). However, precipitation during individual months of this 

6-month rainfall season is not related to SST signatures that include PDV, ENSO and GSST in different 

combinations (Hoell et al. 2015).  

Atmospheric general circulation models (GCMs) and ocean-atmosphere coupled models, which have been widely 

used for seasonal forecasting globally, have improved precipitation forecast skill (e.g., Barnston et al. 2010; 

Barnston and Mason 2011; Barnston et al. 2003; Doblas‐Reyes et al. 2013; Landman 2014; Landman et al. 

2012; Sachindra et al. 2014a; Sachindra et al. 2014b; Tippett et al. 2003; Ehsan et al. 2017). Such models are also 

useful for forecasting precipitation over the Middle East (Tippett et al. 2003; Tippett et al. 2005) and Iran (Shirvani 

and Landman 2016; Najafi et al. 2021). The North American Multi-Model Ensemble (NMME) is a source of 

intra-seasonal to inter-annual forecasts (Kirtman et al. 2014), and combines several dynamical climate models. 

The NMME consists of retrospective forecasts, that span the 1982-2010 period, and operational real-time 

forecasts with up to 9 months lead time.  

NMME forecast skill has been assessed in many parts of the world, including the United States (e.g., Slater et al. 

2019; Khajehei et al. 2018), China (e.g., Ma et al. 2015), India (e.g., Cash et al. 2019), Pakistan (e.g., Ehsan et. 

al. 2020a) and East Africa (e.g., Shukla et al. 2019; Ehsan et. al. 2021). Progress on high-resolution NMME 

http://www.emdat.be/
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models and hybrid statistical-dynamical approaches have been discussed in Becker et al. (2022). In the present 

study, NMME retrospective and real time forecasts are combined to evaluate the skill of six individual models as 

well as the multi-model ensemble mean (MMM) for both monthly (October through June for lead times of 0.5 to 

3.5 months) and seasonal (October-December (OND), January-March (JFM), and April-Jun (AMJ) for lead-times 

of 1.5 to 3.5 months) forecasts over Iran for the period 1991-2019. The latest versions of the NMME models and 

skill of these models for forecasting Iran’s precipitation has not been evaluated thus far. A substantial ENSO 

influence has been documented in the previous work (Nazemosadat and Cordery 2000; Barlow et al. 2002; 

Nazemosadat and Ghasemi 2004; Mariotti 2007; Barlow et al. 2016; Hoell et al. 2017; Alizadeh-Choobari et al. 

2018; Hoell et al. 2018). The focus of the current study is to investigate how well that influence translates to 

MMM forecast skill for Iran, and whether there is MMM forecast skill that is in addition to the ENSO influence. 

Additionally, the degree to which the forecast skill of MMM is dependent on the ENSO connections with 

precipitation over Iran is examined.  

 
 

2. Data and methods  

2.1. NMME data 

NMME hindcasts and forecasts (Kirtman et al. 2014) for six models are used in this study. The models, whose 

details are outlined in Table 1, are the National Centers for Environmental Prediction-Climate Forecast System 

Version 2 (NCEP-CFSv2), National Aeronautics and Space Administration-Goddard Earth Observing System 

(GEOS) Subseasonal to Seasonal (S2S) prediction System (NASA-GEOSS2S), Ocean-Land-Atmosphere studies 

(COLA-CCSM4), Geophysical Fluid Dynamics Laboratory- Seamless System for Prediction and Earth System 

Research (GFDL-SPEAR), Global Environmental Multiscale-Nucleus for European Modeling of the Ocean 

(GEM-NEMO) and Canadian Meteorological Centre (CanCM4i). These at the latest model versions included in 

NMME whose forecasts are provided by the NOAA Climate Prediction Center 

(https://www.cpc.ncep.noaa.gov/products/NMME/). The NMME data are archived by the International Research 

Institute for Climate and Society. The GFDL-SPEAR retrospective period is started from 1991 and therefore all 

NMME models have a common period from 1991 to present. In the present study, the end of retrospective period 

of each model, which listed in Table 1, is used and both retrospective and real time forecasts are combined to 

evaluate the NMME models for the period 1991-2019. In this period, for example, the GFDL-SPEAR contains 

only retrospective forecasts and the anomalies are computed with respect to the period 1991-2019. All NMME 

retrospective forecasts are bias corrected (making use of the hindcasts) using cross-validation (for details how to 

make bias correction see Kirtman et al. (2014) and Kirtman and Min (2009)).  

The forecast lead-times used in this study for monthly forecasts are 0.5, 1.5, 2.5 and 3.5 months, and 1.5, 2.5 and 

3.5 for seasonal forecasts. For example, if the initial condition is started in early January 1991 and the target 

months are January 1991, February 1991, March 1991 and April 1991 the leads time are considered 0.5, 1.5, 2.5 

and 3.5 months, respectively. Also, if the target season is OND 1991 and the initial conditions are started in early 

October 1991, September 1991 and August 1991 the leads time are considered 0.5+1.5+2.5
3

= 1.5,  1.5+2.5+3.5
3

=
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2.5, and  2.5+3.5+4.5
3

= 3.5  months, respectively. The model data is available on a 1  horizontal resolution, and 

the number of ensemble members for each model varies from 4 to 30 (see Table 1), of which the ensemble means 

are used for all models. When a combination of models or multi-model is created, the forecast skill is generally 

higher than any single model (Saha et al. 2014; Smith et al. 2013). In the present study, the multi-model mean 

(MMM) is created by averaging the ensemble mean of these six models. Forecast SST and 200 hPa geopotential 

height from the multi-model mean are used to evaluate ENSO teleconnections.  

 

2.2. Observational data 

 

Global Precipitation Climatology Centre (GPCC) version 2020 monthly precipitation data (Schneider et al. 2011), 

which is based on quality-controlled data from 67200 stations world-wide is used to verify model skill. GPCC 

has been evaluated with observations data over Iran in previous work (Raziei et al. 2011; Seyed-Mohammad 

Hosseini-Moghari et al. 2018; Fallah et al. 2019). GPCC is the most suitable dataset among four gridded 

precipitation datasets – Climatic Research Unit (CRU), GPCC, PERSIANN-Climate Data Record (PCDR) and 

University of Delaware (UDEL) (Seyed-Mohammad Hosseini-Moghari et al. 2018). Fallah et al. (2019) evaluated 

(a) gauge-interpolated datasets (GPCCv8, CRU TS4.01, PREC/L, and CPC-Unified), (b) multi-source products 

(PERSIANN-CDR, CHIRPS2.0, MSWEP V2, HydroGFD2.0, and SM2RAIN-CCI), and (c) reanalyses (ERA-

Interim, ERA5, CFSR, and JRA-55) with gauge observations over the Karun basin in southwestern Iran. They 

found that overall the GPCCv8 dataset agrees best with the observations. GPCC dataset in comparison with 

NCEP-NCAR dataset shows a better agreement with rain gauge observations and GPCC can be used for drought 

monitoring in Iran (Raziei et al. 2011). GPCC is at  25.025.0 ×  spatial resolution and available from the IRI data 

library. The GPCC monthly data is re-gridded to 1° to match the resolution of the NMME models. 

Iran lies within the western Alpine-Himalayan chains with the Alborz and Zagros mountain ranges. These two 

mountain ranges play a vital role in the Iranian atmospheric systems, consequently influencing the amount and 

distribution of precipitation over Iran (Shirvani 2017). Using the GPCC data, Figure 1 depicts the percentage of 

the climatological mean of monthly precipitation over the study area, taken here as the region bounded by the 

rectangle 26°N to 39°N and 44°E to 62°E. The wet season spans from October through May, with the largest 

precipitation totals observed from December through March. The beginning of the water year within the study 

area is in the late September, and according to Fig 1, about 75 percent of the annual precipitation falls from 

October to March. OND and JFM seasons are respectively considered as autumn and winter seasons in the 

previous studies (e.g., Nazemosadat and Cordery 2000; Nazemosadat and Ghasemi 2004; Shirvani and Landamn 

2016). 

200 hPa geopotential height on a fixed 2.5° × 2.5° latitude–longitude grid from the NCEP-National Atmospheric 

Research (NCAR) reanalysis dataset (Kalnay et al. 1996) was used.  

 

2.3. ENSO phase  

https://www.tandfonline.com/author/Hosseini-Moghari%2C+Seyed-Mohammad
https://www.tandfonline.com/author/Hosseini-Moghari%2C+Seyed-Mohammad
https://www.tandfonline.com/author/Hosseini-Moghari%2C+Seyed-Mohammad
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ENSO phases and the Niño3.4 index, area averaged SST anomalies over 5ºS-5ºN, 170ºW-120ºW, during 1991-

2019 are obtained from the NOAA Climate Prediction Center. These estimates of ENSO characteristics are based 

on SSTs from the Extended Reconstructed SST Version 5 (ERSST.v5; Huang et al. 2017). To assess model 

performance during strong ENSO phases, La Niña and El Niño years are selected based on the threshold of -

/+0.5ºc for 3 months running mean Niño3.4 SST anomalies (Table 2).  

 

 

2.4. Forecast skill   

 

The forecast skill of the NMME is usually assessed using both deterministic (non-probabilistic) and probabilistic 

measures (Kirtman et al. 2003; Becker et al. 2014). In this study, the temporal and spatial Pearson correlation 

(TPC and SPC; as the deterministic measures) as well as ranked probability skill scores (RPSS; as the probabilistic 

measure) are used to evaluate the forecast skills of the NMME over Iran. The spatial Pearson correlation 

coefficient, normalized standard deviation (NSD) and normalized centered root mean square error (NCRMSE) 

between the observations and forecasts are calculated and illustrated in a Taylor diagram (Taylor 2001). 

Moreover, climatological mean difference (MD) between forecasts and observations are calculated and explained. 

The teleconnection between regional precipitation and Niño3.4 SST is evaluated using both Pearson and 

Spearman correlation. Statistical significant of correlation coefficient is evaluated using the student-t test (Wilks 

2011).  

The probabilistic nature of ensemble forecast systems requires verification methods based on probabilistic skill 

scores (Müller et al. 2005). The Brier score (BSS) and the ranked probability score (RPS) are widely used to 

describe the skill of categorical probabilistic forecasts. The RPS, which is an extension of the Brier score to a 

multi-categories event, is the sum of squared differences between the cumulative forecast and observation 

categories (Wilks, 2011). A RPSS compares the RPS for the forecast with that of a standard control, or reference, 

forecasts. The reference forecasts are climatological quantile values of the observed precipitation in this study. 

The RPSS is zero if RPS for forecast and climatology forecast is equal, indicating no skill. The highest RPSS is 

1, indicating perfect skill. The RPSS (Epstein 1969; Müller et al. 2005; Wilks 2011) is used here to assess NMME 

forecasts for three equi-probable categories of above-, near- and below-normal observed precipitation such that 

the climatological quantile value is 0.33 for each of the three categories. Forecast probabilities of these categories, 

which are used in computing RPS, are often estimated using the logistic regression model (LRM) (Hagedorn et 

al. 2008; Wilks 2009). For estimating forecast probabilities, suppose that p is the probability forecast and 𝑥𝑥 is the 

single predictor (here, 𝑥𝑥 is the NMME forecast), a LRM is expressed as: 

                                                            𝑝𝑝 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽0+𝛽𝛽1𝑥𝑥)
1+𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽0+𝛽𝛽1𝑥𝑥)

                                                                               (1)                                   

where 𝛽𝛽0 and 𝛽𝛽1 are regression parameters (or coefficients). A LRM can be also expressed as a logit function 

                                                   𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑝𝑝
1−𝑝𝑝

� = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽0 + 𝛽𝛽1𝑥𝑥)                                                                  (2) 
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The unknown parameters of LRM are estimated using an iterative maximum likelihood method (McCullagh and 

Nelder 1989; Wilks 2011). In this study, the generalized linear model (GLM) function within the R software is 

used for parameters estimation. The cross-validation (Wilks 2011) ordinal regression model using a one-year-out 

window is applied for evaluating the selected model. 

3. Results and discussion  
The time series of the observed and forecasts averaged over the study area are calculated and then the Pearson 

correlation coefficient between these time series is computed to provide a temporal Pearson correlation over the 

whole study area. Figure 2 shows the precipitation forecast skill over Iran in terms of TPC for six NMME models 

and MMM forecasts for each lead time and for months (from October to Jun) and for seasons (OND, JFM, and 

AMJ). The corresponding values of this Figure present in Table 3. As expected, higher TPC is generally observed 

at the shortest lead-times (i.e., 0.5-month lead for monthly and 1.5-month lead for seasonal time scales). SPEAR 

is generally the best model among single models with the highest TPC. The skill for November forecasts for all 

models is higher than all other months such that the TPC for this month for both MMM and SPEAR is statistically 

significant for all lead times (Figure 2 and Table 3). The TPC of the MMM is statistically significant in January, 

March, May, October, November and December at 1.5 month lead-times.  

Figure 2 and Table 3 indicate that the TPC for seasonal time scales is generally higher than for monthly time 

scales such that the MMM and SPEAR produces a high and significant TPC for all lead times (except 3.5-month 

lead-times for JFM SPEAR). The TPC for OND precipitation forecasts for all models (except GEM-NEMO) is 

higher than JFM and AMJ precipitation forecasts. Overall, for both monthly and seasonal time scales the TPC of 

the MMM is higher than the TPC of the individual models. The TPC of the SPEAR model is the most similar to 

the TPC of the MMM. Therefore, from a temporal perspective, the MMM shows the largest Pearson correlation.    

 Figure 3 shows that the SPEAR model produces a high and significant SPC, a low NCRMSE and a low difference 

between normalized standard deviation (NDS) and the value of one for January, Feb, March, November and 

December for both 0.5- and 1.5-month lead-times. For example, SPC, NCRMSE and NDS of the SPEAR model 

for January at 0.5-month lead-times are 0.79, 0.62 and 0.97, and those of the MMM are 0.77, 0.64, and 0.63, 

respectively.  The estimated SPC are statistically significant at the 95% level for all months and seasons. Figure 

3 indicates that the MMM performs better than the individual model in April, May, and June.  However, the 

SPEAR model produces a better NSD in January, February, March, and November (Figure 3). Also, Taylor 

diagrams (Figure 4) indicate that the SPEAR model performs better than the other models in JFM and OND 

seasons. From a spatial perspective, the combination of six NMME models does not show higher skill, particularly 

normalized standard deviation, than SPEAR model for OND and JFM season over Iran. These results are similar 

to the results of DJF precipitation multimodel ensemble forecasts over the Central Southwest Asia (Ehsan et al. 

2020b). However, the MMM produces a better skill for AMJ rainfall. In general, Taylor diagrams (Figures 3 and 

4) indicate that the SPC and NCRMSE of the SPEAR model is close to MMM, but the NSD of the SPEAR model 

is closer to one compared to the MMM for months from November to March and two seasons (OND, JFM). When 

the average of NMME models is used, smoothing of the MMM forecasts is done and the variance of MMM is 

reduced and then the standard deviation ratio of MMM to the observations become less than one.     
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In order to provide further information on different parts of the study area, the TPC and RPSS between time series 

of the observed and MMM forecasts are calculated for monthly and seasonal precipitation at each gridpoint. The 

TPC map for monthly forecasts at 0.5-month lead-time is plotted in Figure 5. Figure 5a indicates that there is a 

significant correlation between observed and forecast precipitation in most areas of the study area for all months 

at a 0.5-month lead time. High correlation skill is obtained over the Zagros ranges for most months. The forecast 

skill is low over the northwest of Iran in January, February and October (Figure 5a). In March, May, June and 

November, the TPC is non-significant over the coast of the Caspian Sea (Figure 5a). The TPC is significant over 

the whole study area in December at 0.5-month lead-time. A significant Pearson correlation is obtained over some 

parts of the study area at 1.5-month lead-times for January, March, May, October and November (Figure 5b). 

However, there is low skill over most parts of the domain for February, April, June and December for this lead 

time.  

Figure 6a shows the spatial skill of MMM forecasts for monthly forecasts for 0.5-month lead time as measured 

by the RPSS. This Figure shows that the RPSS is high at 0.5-month lead-time for February, November and 

December in comparison with the other months. The lowest RPSS is over the northern parts of Iran. The RPSS 

indicates skillful forecast over south east and east of Iran in February at 0.5-month lead-time. The spatial RPSS 

also indicates a low forecast skill over the larger part of the study area for most months at 1.5-month lead-times 

(Figure 6b). Overall, the results of the RPSS are consistent with that of the correlation maps. Figure 7 shows the 

spatial distribution of the mean difference between MMM forecasts and observed for monthly time scale at 0.5-

month lead-time. This Figure indicates that the MMM precipitation forecasts underestimate the precipitation 

totals of January, February, March, October, November and December over the northern regions and Zagros 

mountains where the precipitation amount is high. The MMM precipitation forecasts are overestimated in April, 

May and June over the larger part of the study area. Also, these forecasts are overestimated over the central 

regions during all months.  

Figure 8 indicates that TPC is significant over the western, southern and northeastern areas of Iran for JFM 

precipitation at a 1.5-month lead time, and TPC is significant over some areas in the western and northeastern at 

a 2.5-month lead-time. Figures 8 and 9 indicate that the skill for OND precipitation forecasts is higher than JFM 

and AMJ precipitation. These Figures also indicate that the skill for AMJ forecasts is lower than JFM and OND 

precipitation. Both Taylor diagram and RPSS indicate that the seasonal precipitation forecasts have a higher skill 

in OND. This result is consistent with previous works (Shirvani and Landman 2016; Najafi et al. 2021). The 

spatial pattern of the MD for seasonal time scales indicates that the MMM precipitation forecasts for both 1.5-

month and 2.5-month lead times are underestimated over the northern regions and Zagros mountains for JFM and 

OND (Figure 10). The spatial pattern of the MD for AMJ precipitation is different from the other seasons such 

that the MMM precipitation forecasts for both 1.5-month and 2.5-month lead times are similar and overestimated 

for AMJ over the larger part of the study area.  

In order to determine whether or not the MMM’s forecast skill is dependent on ENSO connections with 

precipitation, the TPC between simultaneous Niño3.4 SST and seasonal precipitation for observations and MMM 

forecasts for 1.5-month lead time over the study area is computed and shown in Figure 11. This Figure indicate 
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that there is a positive and significant Pearson correlation between Niño3.4 SST and precipitation for both 

observation and forecast in OND over the larger part of Iran. For this season there is a positive significant Pearson 

correlation between observed Niño3.4 SST and precipitation over the western, southwestern, northwestern and 

northeastern areas of Iran. However, the linear association between observed Niño3.4 SST and precipitation is 

not significant over most areas for the JFM and AMJ seasons (Figure 11a), that is significant over most areas for 

MMM forecasts for AMJ season (Figure 11b). Therefore, most areas of Iran are not linearly correlated with 

Niño3.4 SST during JFM, which is one of the main rainy seasons. Moreover, Niño3.4 SST – precipitation 

teleconnection during AMJ is not correctly generated by MMM. These results have indicated that although the 

response of JFM precipitation to ENSO events is weak, the skill of MMM precipitation forecasts is acceptable 

for this season at 1.5-month lead-time over most parts of Iran, as well as at 2.5-month lead-times for some parts 

of Iran (Figure 8). These results suggests that the skill of MMM is not restricted to ENSO phases as has been 

found for other regions, for example southern Africa (Landman and Beraki 2012).  

The regional averaged of the observed seasonal precipitation and MMM precipitation forecast (at 1.5 and 2.5- 

month lead-times) are standardized and then its time series plotted, and scatter plot and heatmap of the correlations 

are presented in Figures 12, 13 and 14, respectively. These Figures also contain seasonal Niño 3.4 SST anomalies. 

Figure 12a (12b) shows that both below and above-average observed JFM (AMJ) precipitation are occurred 

during El Niño years, indicating that the JFM (AMJ) precipitation variability is not closely aligned with ENSO 

events. However, the below (above)-average observed and forecasted precipitation for OND season are occurred 

during La Niña (El Niño) years (Figure 12c). There is a moderate (weak) uphill pattern between the observations 

with forecast at 1.5 and 2.5 month lead-times (Niño 3.4 SST) for JFM season (Figure 13a, b). For the OND season, 

Figure 13c indicates a moderate uphill pattern between the observations with forecast at 1.5 and 2.5 month lead-

times, and Niño 3.4 SST. The heatmap of the Spearman and Pearson correlations for regional observations, MMM 

forecast at 0.5 and 1.5 month lead-times, and Niño 3.4 SST anomalies plotted in Figure 14. Neither the Spearman 

nor the Pearson correlations are statistically significant between observed precipitation and between seasons, 

indicating that the seasonal precipitation pattern is different between seasons. The Spearman and Pearson 

correlation coefficients between the observed JFM precipitation with forecasts at 1.5 and 2.5 month lead-times 

are statistically significant at the 0.05 significance level; while these correlations between the observed JFM 

precipitation and Niño 3.4 SST anomalies are not significant (Figure 14). These correlations between the observed 

AMJ precipitation with forecasts at 1.5 month lead-times are statistically significant at the 0.05 significance level. 

However, the Spearman correlation between the observed AMJ precipitation with 2.5 month lead-times forecasts 

and Niño 3.4 SST anomalies are not statistically significant at 0.05 significance level. Figure 14 shows that both 

the Spearman and Pearson correlations between OND observed precipitation with forecast at 0.5 and 1.5 month 

lead-times, and Niño 3.4 SST anomalies are strong and statistically significant at the 0.05 significance level. 

These results which are consistent with previous studies (Nazemosadat and Cordery 2000; Nazemosadat and 

Ghasemi 2004) indicate that  the connection between the ENSO signal and OND precipitation in Iran is strong, 

but is weak for the JFM season. Also, the regional precipitation over Southwest Asia is not strongly influenced 

by ENSO in the individual months of January, February, and March (Hoell et al. 2015). 
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However, for the OND, JFM and AMJ precipitation seasons, the area-averaged MMM precipitation forecast at 

1.5 and 2.5-month lead-times are statistically significant. Therefore, although the connection between the ENSO 

signal with JFM and AMJ precipitation in Iran is weak, significant skill levels can be obtained from MMM 

forecasts at 1.5 and 2.5-month lead-times. The forecast skill level is closely related to ENSO and so decreases 

notably in JFM and AMJ along with the ENSO signal. Figure 15 shows the ENSO teleconnection for JFM, AMJ 

and OND precipitation in terms of 200 hPa heights for observed and MMM forecast data at 1.5-month lead-time, 

respectively. The spatial pattern of geopotential height at 200 hPa– Niño 3.4 SST anomalies correlation for 

observed data is similar to MMM forecast data in OND season, while there is some different in JFM and AMJ 

seasons. While the seasonal change in ENSO influence on precipitation has been shown previously (Hoell et al. 

2017), the circulation analysis here shows that the change in precipitation influence is associated with the degree 

to which the circulation anomalies in southern Asia are able to penetrate to the west. While a full analysis of the 

dynamics underlying the change in ENSO teleconnection is beyond the scope of this analysis, both the structure 

of the Asian jet and the location and intensity of the tropical diabatic heating are important to the propagation of 

the ENSO signal into the region (Barlow 2012; Barlow et al. 2016; Barlow et al. 2021) and we hypothesize that 

the seasonal evolution in both factors are playing an important role in the precipitation changes. Figures 17, 18 

and 19 show the Pearson correlation between simultaneous global SST anomalies and regional precipitation for 

observed, MMM and SPEAR forecast data at 1.5-month lead-time, respectively. The spatial pattern of observed 

global SST anomalies-regional precipitation correlation is similar to MMM and SPEAR models in OND season, 

while there is some different in JFM and AMJ seasons. Figures 17c, 18c and 19c suggested that teleconnection 

between global SST anomalies and regional precipitation is generated by models in OND season. Therefore, these 

models are able to capture the physical mechanism generating OND precipitation over Iran (based only on the 

SST). The similar result has been discussed in the recent study (Acharya et al. 2021) that concluded that the 

physical mechanism generating rainfall over Ethiopia during JJAS season is captured by the GCM as well. The 

influence of SSTs from different basins, such as the Black and Mediterranean Seas, is possible sources of the non-

ENSO predictability for JFM precipitation over Iran (Figure 17a).  

 

 

4. Conclusions 

A deterministic and probabilistic investigation of the NMME monthly and seasonal precipitation forecasts is 

conducted to assess the skill of the NMME precipitation forecasts over Iran during its wet season. The NMME 

precipitation data from six models  

(CFSv2, NASA, COLA, SPEAR, CanCM4i and  GEM-NEMO) 

 as well as a multi-model mean forecasts are evaluated for monthly (October-Jun) at leads of 0.5, 1.5, 2.5 and 3.5 

months and seasonal (OND, JFM, and AMJ ) at leads of 1.5, 2.5 and 3.5 months based on the period 1991-2019 

(results summarized in Figures 2-4). Forecasts at the 0.5-month (1.5-month) lead-times are effectively forecasts 

for the month (season) in which the initialization of the NMME model(s) occurs. Although the 0.5 (1.5)-month 

lead-time is for the same month (season) in which the global model was initialized, the initialization happens 



 11 

early in the month (season) and so such forecasts may still be useful to forecast users. Using Taylor diagrams, for 

most months (October to March) and lead times, the highest skills are provided by the SPEAR model. For most 

models, the month with highest forecast skill is November. For the SPEAR and the MMM, the forecast skill is 

statistically significant for all lead times.  

The MMM does not show many advantages over the SPEAR in forecasting OND and JFM precipitation. 

However, the MMM produces the highest overall deterministic and probabilistic forecast skill in April, May and 

June months and the AMJ season. A low RPSS and non-significant temporal Pearson correlation are observed 

over northern Iran for most months. The MMM precipitation forecasts are underestimated over the northern 

regions and Zagros mountains where the amount of precipitation is high for JFM and OND for both 1.5-month 

and 2.5-month lead times. However, the MMM precipitation forecasts are overestimated over most regions in the 

AMJ season. Statistically-significant temporal and spatial Pearson correlation is found for the SPEAR and MMM 

forecasts for all seasons and all leads (except 3.5-month lead for JFM SPEAR) and the seasonal precipitation 

forecasts have the highest skill in the OND season. On the other hand, the temporal Pearson correlation between 

the area-averaged time series of the observed precipitation and Niño 3.4 SST is only significant for the OND and 

not for the JFM and AMJ seasons. Therefore, although the connection between ENSO events with JFM and AMJ 

precipitation over Iran is marginal, there is, nonetheless, significant skill in those seasons in the MMM forecasts.  

That is, the MMM forecasts have skill beyond ENSO. This result is consistent with the results by Landman and 

Beraki (2012) for South Africa and Shirvani and Landman (2016) for Iran.  

This analysis raises some interesting dynamical questions in terms of what causes the changes in regional ENSO 

influence between the first and second halves of the cold season, and what is the source of predictability in the 

second half when the ENSO influence is negligible. Barlow et al. (2021) have suggested that the structure of the 

Asian jet can play an important role in modulating the ENSO influence, so analysis of the seasonal changes in the 

jet structure may prove useful. Possible sources of the non-ENSO predictability are not yet clear, but the presence 

of model forecast skill suggest that some targeted modeling experiments to separate out the influence of SSTs 

from different basins, as well as the role of regional factors such as soil moisture may prove fruitful.  
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Figure 1. The percentage of the climatological mean of GPCC monthly precipitation over the study area 
for the period 1991-2019.  
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Figure 2. The temporal Pearson correlation between time series of the regional averaged observations 
and forecasts from six NMME models and MMM for monthly and seasonal time scales over the study 
area. (a) 0.5-month, (b) 1.5-months, (c) 2.5-months and (d) 3.5-months leads time. White parts indicate 
the correlation values do not have statistical significance at the 95% level. 

 



 

 

 

 

 

 

 



 

 

Figure 3. Taylor diagrams for climatological monthly precipitation over Iran between the observations 
and NMME models for 0.5-month (a) and 1.5-months (b) leads time during 1991-2019.  

 



 

Figure 4. Taylor diagrams for climatological seasonal precipitation over Iran between the observations 
and NMME models for 1.5-month (a) and 2.5-months (b) leads time during 1991-2019.  

 



 

 



 

Figure 5. The temporal Pearson correlation map for multi-model mean (MMM) monthly forecasts for 0.5-
month (a) and 1.5-months (b) leads time. Areas where the correlation values do not have local statistical 
significance at the 95% level are masked out. 

 



 

 

 



 

Figure 6. The spatial distribution of the RPSS for MMM monthly forecasts for 0.5-month (a) and 1.5-
months (b) leads time. 

 



 

Figure 7. The spatial distribution of the mean difference (MMM Forecasts -Observed) for monthly time 
scale for 0.5-month leads time. 

 

 

 



 

 

 

Figure 8. The temporal Pearson correlation map for seasonal MMM forecasts for 1.5-month (a) and 2.5-
months (b) leads time. Areas where the correlation values do not have local statistical significance at the 
95% level are masked out. 

 

 



 

Figure 9. The spatial distribution of the RPSS for MMM seasonal forecasts for 1.5-month (a) and 2.5-
months (b) leads time. 

 



 

Figure 10. The spatial distribution of the mean difference (MMM Forecasts- Observed) for seasonal time 
scale for 1.5-month (a) and 2.5-months (b) leads time. 

 



 

Figure 11. Niño 3.4SST – precipitation Pearson correlation maps for observation (a) and NMM forecast 
at lead 1.5-months (b) for JFM, AMJ and OND seasons. Color parts indicate significant areas at the 95% 
level. 

 



 

 

 

Figure 12. Time series plot of the standardized regional (area-averaged) observations (black line), MMM 
precipitation forecast at leads 1.5 (black dot) and 2.5 months (black dash), and Niño 3.4 SST anomalies 
(green line) for JFM (a), AMJ (b), and OND (c) seasons. The ‘EL’ refers to the strongest El Niño and ‘La’ 
refers to the strongest La Niña during the study period.  

 



 

Figure 13. The scatter plot between the standardized regional (area-averaged) observations and MMM 
precipitation forecast at lead time 1.5 (left), forecast at lead 2.5 months (middle), and Niño 3.4 SST (right) 
for JFM (a), AMJ (b), and OND (c) seasons. The corresponding Pearson correlation (𝑟𝑟) coefficients present 
in the scatter plot.  



 

Figure 14. Heatmap of the Spearman (below the main diagonal) and Pearson (above the main diagonal) 
correlations for regional observations, MMM forecast at leads 1.5 and 2.5 months, and Niño 3.4 SST 
anomalies. The ‘O’, ‘L1.5’, ‘L2.5’, and ‘S3.4’ after the name of seasons refer to observations, MMM 
forecast at leads 1.5 and 2.5 months, and Niño 3.4 SST, respectively. White boxes indicate the 
correlation values do not have statistical significance at the 95% level. 

 

 



 

 

 

 

 

 

 

 

Figure 15. Geopotential height at 200 hPa– Niño 3.4 SST anomalies correlation maps for observed (a, c, 
e) and MMM forecast at lead 1.5-months (b, d, f) data. Color parts indicate significant areas at the 95% 
level. 



 

 

 

 

Figure 16. Observed global SST anomalies – regional precipitation correlation maps for JFM (a), AMJ (b), 
and OND (c) seasons. Color parts indicate significant areas at the 95% level. 

 



 

 

 

 

 

 

Figure 17. Global SST anomalies- regional precipitation correlation map for MMM forecast for 1.5-month 
lead time for JFM (a), AMJ (b), and OND (c) seasons. Color parts indicate significant areas at the 95% 
level. 

 

 



 

 

 

 

Figure 18. Global SST anomalies- regional precipitation correlation map for forecasts from SPEAR model  
for 1.5-month lead time for JFM (a), AMJ (b), and OND (c) seasons. Color parts indicate significant areas 
at the 95% level. 

 



 

 

Graphical abstract: 

The Spearman (below the main diagonal) and Pearson (above the main diagonal) correlation between observed 
precipitation averaged over Iran and Niño 3.4 SST is only significant for the OND and not for the JFM and AMJ 
seasons. However, these correlations between observed precipitation and multi-model ensemble means (MMM) 
forecasts for all seasons and leads 1.5 and 2.5-month lead are statistically significant. Therefore, the MMM forecasting 
system is providing additional information beyond the ENSO correlation. The ‘O’, ‘L1.5’, ‘L2.5’, and ‘S3.4’ after the 
name of seasons refer to observations, MMM forecast at leads 1.5 and 2.5 months, and Niño 3.4 SST, respectively. 
White boxes indicate the correlation values do not have statistical significance at the 95% level. 

 



Table 1. Six forecast models used in this work. 

 

 

 

 

Name Model Acronym 
used 

Ensemble 
members period Native Atm. 

Res. 
Native Ocn. 

Res. 

Prediction 
length 

(months) 
Reference 

NCEP Climate Forecast 
System, version 2 

NCEP-
CFSv2 CFSv2 28 

Hindcast=1982-
2010 

Forecast=2011-
Present 

GFS 
T126L64 

MOM4L40 
0.25° Eq. 0.5-9.5 

Saha et al. 
(2014) 

 

Goddard Earth 
Observing System 

(GEOS) Sub-seasonal to 
Seasonal prediction 

(S2S) system 

NASA-
GEOSS2S NASA 

Hindcast=4, 
 

Forecast=10 

Hindcast=1981-
2017 

Forecast=2017-
Present 

GEOS5 
AGCM 

0.5° L72 

MOM5L40 
0.5° Eq. 0.5-8.5 Molod, A., et 

al. (2020) 

COLA-RSMAS-
CCSM4 

Cola-
CCSM4 COLA 10 1982-present CAM4 

0.9×1.25°L26 
POPL60 
0.25° Eq. 0.5-11.5 

Kirtman et al. 
(2014) 

 
Geophysical Fluid 

Dynamics Laboratory -
(Seamless System for 
Prediction and Earth 

System Research 

GFDL-
SPEAR 

 
SPEAR Hindcast=15, 

Forecast=30 

Hindcast=1991-
2020 

Forecast=2020-
present 

AM4.0 
0.5° L33 

MOM6L75 
0.3° Eq. 0.5-11.5 

Delworth, T. 
L., et al. 
(2020) 

Canadian 
Meteorological Centre- 

CanCM4i 
CanCM4i CanCM4i 10 

Hindcast=1981-
2018 

Forecast=2016- 
present 

CanAM4 
T63L31 

CanOM4 
L40 . 94° Eq. 0.5-11.5 Lin et al. 

(2020) 

ECCC-GEM-NEMO GEM-
NEMO 

GEM-
NEMO 10 

Hindcast=1981-
2019 

Forecast=2019-
present 

GEM 
256 × 128 

NEMO 
1 × 1 
1/3 Eq 

0.5-11.5 Lin et al. 
(2020) 

https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/.CanCM4i/
https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/.CanCM4i/


Table 2. La Niña and El Niño years. 

La Niña El Niño 
1998-1999 1991-1992 
1999-2000 1997-1998 
2007-2008 2009-2010 
2010-2011 2015-2016 

 

 



Table 3. The temporal Pearson correlation between time series of the regional averaged observations and forecasts from six NMME models and 
MMM for monthly and seasonal time scales over the study area. 

Lead Model    Month       Season  
Jan Feb Mar Apr May Jun Oct Nov Dec JFM AMJ OND 

0.5 

SPEAR 0.70* 0.89* 0.77* 0.64* 0.58* 0.67* 0.43* 0.84* 0.68*    
CanCM4i 0.72* 0.72* 0.61* 0.71* 0.69* 0.54* 0.45* 0.80* 0.64*    

CFSv2 0.71* 0.74* 0.51* 0.53* 0.63* 0.43* 0.69* 0.76* 0.72*    
GEOSS2S 0.45* 0.64* 0.38* 0.39* 0.56* 0.27 0.51* 0.75* 0.49*    
CCSM4 0.62* 0.74* 0.64* 0.6* 0.67* 0.37* 0.48* 0.64* 0.63*    

GEM-NEMO 0.64* 0.86* 0.59* 0.64* 0.64* 0.63* 0.55* 0.76* 0.65*    
MMM 0.75* 0.87* 0.71* 0.70* 0.74* 0.62* 0.66* 0.86* 0.70*    

1.5 

SPEAR 0.48* 0.12 0.38* 0.43* 0.36* 0.11 0.48* 0.74* 0.23 0.41* 0.66* 0.69* 
CanCM4i 0.26 0.30 0.37*      0.29 0.48* 0.15 0.50* 0.50* 0.19 0.58* 0.71* 0.65* 

CFSv2 0.39* 0.26 0.38* 0.17 0.38* 0.00 0.51* 0.63* 0.19 0.57* 0.42* 0.61* 
GEOSS2S 0.56* 0.22 0.03 0.01 0.30 -0.06 0.47* 0.35* 0.15 0.49* 0.40* 0.57* 
CCSM4 0.27 0.15 0.33 0.29 0.37* 0.20 0.19 0.51* 0.20 0.60* 0.52* 0.69* 

GEM-NEMO 0.46* 0.31 0.37* 0.34 0.37* 0.12 0.15 0.25 0.45* 0.54* 0.56* 0.22 
MMM 0.52* 0.30 0.44* 0.34 0.45* 0.10 0.56* 0.67* 0.35* 0.63* 0.64* 0.74* 

2.5 

SPEAR -0.08 0.27 0.32 0.27 0.27 0.36* 0.35* 0.72* 0.24 0.47* 0.48* 0.80* 
CanCM4i 0.18 0.04 0.11 0.38* 0.36* 0.20 0.57* 0.54* 0.35* 0.32 0.33 0.61* 

CFSv2 0.23 0.01 0.10 0.02 0.15 -0.06 0.56* 0.50* 0.00 0.43* 0.20 0.59* 
GEOSS2S 0.35* 0.00 0.21 -0.01 0.35* 0.24 0.45* 0.54* -0.06 0.30 0.23 0.62* 
CCSM4 -0.02 0.15 0.29 -0.13 0.18 0.32 0.05 0.48* 0.11 0.36* 0.37* 0.51* 

GEM-NEMO 0.06 0.42* 0.12 0.06 0.42* 0.04 0.36* 0.30 0.15 0.53* 0.44* 0.26 
MMM 0.13 0.26 0.33 0.19 0.34 0.27 0.50* 0.69* 0.26 0.54* 0.40* 0.77* 

3.5 

SPEAR -0.10 0.09 0.35* 0.20 0.35* 0.17 0.34 0.50* 0.09 0.08 0.45* 0.72* 
CanCM4i 0.21 0.07 0.19 0.32 0.39* 0.18 0.48* 0.67* 0.11 0.29 0.51* 0.69* 

CFSv2 0.25 -0.16 0.08 0.08 0.35* -0.04 0.25 0.57* 0.04 0.14 0.15 0.60* 
GEOSS2S 0.22 0.09 0.00 0.03 0.05 0.01 0.46* -0.04 0.18 0.37* 0.14 0.41* 
CCSM4 0.15 -0.25 0.20 -0.17 0.32 0.06 0.43* 0.41* 0.29 0.09 0.09 0.65* 

GEM-NEMO 0.14 0.01 0.15 0.01 0.11 0.30 0.47* 0.43* 0.08 0.38* 0.20 0.31 
MMM 0.25 -0.06 0.30 0.20 0.40* 0.11 0.49* 0.60* 0.28 0.35* 0.39* 0.73* 

* indicates significant correlations at 5% significance level. 
 

 




